resolver las siguientes ecuaciones por el método de sustitución, igualación y reducción 5X – 2Y = - 7 -3X – 4Y = 2 ​

Respuestas 1

Respuesta:

[X = 16/13] y [Y = 11/26]

Explicación paso a paso:

[Método de sustitución]

5x - 2y = - 7 \\ - 3x - 4y = 2 \\ \\ x = \frac{2y - 7}{5} \\ \\ - 3( \frac{2y - 7}{5} ) - 4y = 2 \\ - \frac{6y - 21}{5} - \frac{20y}{5} = \frac{10}{5} \\ - 6y + 21 - 20y = 10 \\ - 26y = - 11 \\ y = \frac{11}{26} \\ \\ \\ x = \frac{2( \frac{11}{26}) - 7 }{5} \\ x = \frac{ \frac{22}{26} - 7}{5} \\ x = ( \frac{22}{26} \div 5) - \frac{7}{5} \\ x = \frac{22}{130} - \frac{7}{5} \\ x = \frac{22}{130} - \frac{182}{130} \\ x = - \frac{160}{130} = - \frac{16}{13}

[Método de igualación]

5x - 2y = - 7 \\ - 3x - 4y = 2 \\ \\ x = \frac{2y - 7}{5} \\ x = - ( \frac{4y + 2}{3} ) \\ \\ \frac{2y - 7}{5} = - \frac{4y + 2}{3} \\ \frac{6y - 21}{15} = - \frac{20y + 10}{15} \\ 6y - 21 = - 20y - 10 \\ 6y + 20y = - 10 + 21 \\ 26y = 11 \\ y = \frac{11}{26} \\ \\ x = \frac{2( \frac{11}{26}) - 7}{5} \\ x = ( \frac{22}{26} \div 5) - \frac{7}{5} \\ x = \frac{22}{130} - \frac{7}{5} \\ x = \frac{22}{130} - \frac{182}{130} \\ x = \frac{160}{130} = \frac{16}{13}

[Método de reducción]

5x - 2y = - 7 \\ - 3x - 4y = 2 \\ \\ 15x - 6y = - 21 \\ - 15x - 20y = 10 \\ \\ - 6y + (- 20y) = - 21 + 10 \\ - 26y = - 11 \\ 26y = 11 \\ y = \frac{11}{26} \\ \\ 5x - 2y = - 7 \\ 5x - 2( \frac{11}{26} ) = - 7 \\ 5x - \frac{22}{26} = - 7 \\ 5x = - 7 + \frac{22}{26} \\ \frac{130x}{26} = \frac{ - 182}{26} + \frac{22}{26} \\ 130x = - 160 \\ x = \frac{ - 16}{13}

¿Conoces la respuesta? Añádela aquí

Can't find the answer?

Iniciar sesión con Google

ó

¿Has olvidado la contraseña?

No tengo una cuenta, y quiero Registrarme

Escoger idioma y región
How much to ban the user?
1 hour 1 day 100 years